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Abstract. It has been shown previously that a novel tunnelling behaviour, dubbed chaos-
assisted tunnelling, can arise in bound, mixed phase space systems possessing reflection
symmetries. As with the usual, direct tunnelling problem of a double well, even a very
weak symmetry breaking typically quenches the ability of certain probability densities to tunnel
resonantly back and forth. Experiments lacking exact reflexion symmetry will fail to exhibit
tunnelling. We show here how chaos-assisted tunnelling can be re-established experimentally
and distinguished from direct tunnelling through the variation of two external system parameters,
and demonstrate the applicability of a generalized three-level model of the tunnelling process
with the coupled quartic oscillators.

1. Introduction

Fundamental differences arise in the behaviour of tunnelling in one-degree-of-freedom
autonomous systems versus more-degree-of-freedom systems. Just as the extra degrees
of freedom engender the possibility of far more complicated system dynamics, these
additional dynamical behaviours may underlie new possible features of tunnelling. Recent
studies in simple dynamical systems possessing more than a single degree of freedom have
led to a number of newly identified phenomena. Some examples are found in chaos-
assisted tunnelling [1, 2], tunnelling behaviours between chaotic eigenstates [3], tunnelling
between strongly localized states [4], chaos-assisted ionization [5], and the properties of
light emission from lasing resonant cavities [6].

Our primary concern in this paper is chaos-assisted tunnelling and broken (or non-
existant) symmetry. This tunnelling is dynamical in nature and, in fact, no potential
barrier need exist at all. As conceptualized up to now [1], for chaos-assisted tunnelling
to exist the system should have discrete symmetries, and the underlying dynamics contain
a mixture of regular and globalized chaotic motion. The regular regions in phase space are
marked by the existence of a dense set of tori on which the system undergoes quasiperiodic
motion, and the rest is filled by a chaotic sea. It is typical for tori in mixed phase space
systems to have lower symmetry than the full system. Rather it is far more exceptional
for a torus to map into itself under all the symmetry operations. Those tori which
have a lower symmetry must be replicated exactly elsewhere in phase space leading to
the expectation of degeneracies via semiclassical theory. The tunnelling occurs between
wavefunctions localized to (semiclassically quantized on) congruent, but distinct tori [7]. A
direct tunnelling mechanism would be characterized by the localized states being coupled
but isolated from the rest of the levels. In contrast, chaos-assisted tunnelling splittings are
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governed by weak coupling of one or more of the localized states to irregular eigenstates
associated with the chaotic region in the phase space, but without direct coupling amongst
the localized levels. The resultant splittings are extremely sensitive to variation of any
external parameter that shifts the irregular spectrum. The splittings can fluctuate orders of
magnitude, and there is no simple theoretical form for them depending on an exponential
of h̄−1.

Very weak symmetry breaking is capable of quenching the tunnelling. This is especially
true at higher excitation energies if the tunnelling is dynamical. In this case the tunnelling
splittings typically decrease with increasing excitation energy where the system is ‘more
semiclassical’. If the discrete symmetries of a system are not fundamental, but rather a virtue
of design, it may be effectively impossible to impose the symmetry well enough to maintain
resonant tunnelling. The lack of exact symmetry applies to many conceivable experiments
in quantum dots, and microwave, optical, and acoustic cavities where weak disorder or
machining imprecision are sufficient to prevent the resonant tunnelling behaviour. Such
experiments are the primary motivation for the investigation discussed in this paper.

For illustration of symmetry-breaking effects with a simple barrier tunnelling example,
one could change slightly the depth of one of the wells in the symmetric double well
Hamiltonian and there would not be transfer of probability from one well to the other
and back with time. However, if the relative well depths are smoothly changed further
as a function of a parameter, tunnelling between certain pairs of states would occur for
narrow ranges of parameter values nearby where the levels undergo an avoided crossing.
The width of the parameter range where tunnelling takes place would be proportional to
the splitting. This is the broken symmetry regime of interest here. Whereas even if there
exists an extremely good symmetry, it is broken sufficiently by weak disorder or other
small perturbations such that the tunnelling would be nil, and it is necessary to vary a
parameter to tune the system through tunnelling regimes associated with avoided crossings
in the spectrum—the smaller the splitting, the smaller the regime. This puts a very stringent
requirement on any experimental attempt to see this tunnelling. There must be very stable
and fine controls over the external parameters. Of course, it is not necessary to have an
approximate symmetry at all. The avoided crossings between any two localized states will
still generally be associated with dynamical tunnelling. The main question is thus, what
are the essential features of chaos-assisted tunnelling under these circumstances and how
experimentally could one re-establish tunnelling and distinguish it unambiguously from
ordinary direct processes?

In the next section, we propose a three-level model incorporating two localized states
and a single irregular state, generalized with respect to that given in [1] for the absence of
symmetry, that captures the simplest tunnelling mechanism without reflexion symmetry. It
turns out that it is necessary to vary two external parameters, one which tunes the system
through crossings between localized levels and the other to displace the irregular levels
near the crossing pair. In section 3, we give an example using the desymmetrized, coupled
quartic oscillators. We end with a brief discussion of coupling to multiple irregular states
and the conclusions.

2. Asymmetric three-level model

The simplest model begins with a three-dimensional subspace of the system spanned by
two orthonormal states denoted{9L,9R} imagined as being localized to tori (L for left and
R for right—not to be taken literally), and another orthonormal irregular, delocalized state,
9C (C for chaotic). In this subspace, the parameter-dependent Hamiltonian can be locally
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expressed as

Ĥ3(α, λ)

(
9L
9R
9C

)
=
(−E(α) 0 v1

0 E(α) v2

v1 v2 Ec(λ)

)(
9L
9R
9C

)
(1)

where the nul matrix element indicates that direct tunnelling is not occurring. If our
goal were to study the competition between direct and chaos-assisted processes, we would
incorporate a third parameter for this matrix element. The parameterα moves the system
through a crossing of the two localized levels, andλ changes the proximity of the closest,
coupled irregular state. In an actual system, the tunnelling matrix elements,{v1, v2}, vary
very little over the small local{α, λ} domain over which avoided crossings occur and are
therefore considered constants. However, they do differ from one realization of tunnelling
in the system’s full spectrum to another (i.e. from one neighbourhood of an avoided crossing
between localized states to another) and various matrix element ratios,r = |v2/v1|, have to
be considered. If there is a weakly broken reflection symmetry and the quantum numbers
of 9L and9R are the same,r would be expected to be very close to unity. Otherwise,v1

and v2 would be expected,a priori, to be independent. They would behave like random
variables from one tunnelling triplet realization to another. If they varied in a Gaussian
fashion as a simple random matrix model would suggest, the distribution of encountered
values ofr would be Lorentzian. Without loss of generality,E(α) andEC(λ) can be taken
to depend linearly onα andλ respectively. Two simplifications would reduce this model to
one appropriate for a symmetric system as given in [1]. The first isE(α) = 0, eliminating
the α parameter entirely. The second is that|v2| = |v1|. Thus by switching to a basis
with a symmetrized and antisymmetrized combination of{9L,9R}, one of the two non-
irregular basis states completely decouples from the problem. The consequences of that
model follows exclusively from diagonalization of the ‘active’ two-by-two submatrix. Here
the full three dimensions enter.

The first step is to determine the conditions required for tunnelling to take place in this
system. Consider the evolving probability,

P(t) = |〈9R| exp(−iĤ t/h̄)|9L〉|2 (2)

which measures the likelihood of being found on the right after initially being localized on
the left. At some unspecified later timeτ , P(τ) attains unity if the tunnelling is complete.
Since this may not be the case, it is of interest to know the maximum possible transfer of
probability,P, from one localized state to the other. Expanding the localized states in terms
of the eigenstates,

|9L〉 =
3∑

j=1

aLj |Ej 〉

|9R〉 =
3∑

j=1

aRj |Ej 〉
(3)

one finds

P(t) = |〈9R|e−iĤ t/h̄|9L〉|2 =
∣∣∣∣ 3∑
j=1

aLja
∗
Rje
−iEj t/h̄

∣∣∣∣2

P = max{P(t)} =
( 3∑
j=1

|aLja∗Rj |
)2

(4)
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where the|Ej 〉 are the three true eigenstates of the three-level model. To understand the
implications of equation (4), it is convenient to introduce symmetrized and antisymmetrized
states built on{|9L〉, |9R〉}. For time-reversal invariant systems, complex phases are
unnecessary, and

|±〉 = 1√
2
|9L〉 ± 1√

2
|9R〉 (5)

if {|9L〉, |9R〉} themselves are time-reversal invariant states. If the above expression forP
is to attain unity, it turns out that one of the three eigenstates must be given by|±〉. To
begin with, normalization constraints require that|aLj | must equal|aRj | for all j†. From
orthogonality constraints, the signs cannot all be the same nor all different. But if only one
of the signs is different, the antisymmetric linear combination reduces to an expansion of
a single term, i.e. is an eigenstate. If two of the signs are different, the symmetric linear
combination is an eigenstate. The other two eigenstates can be any linear combination of
the remaining two,|∓〉 and |9C〉. This is the three-level generalization of the usual, direct
two-level result that the eigenstates have the form|±〉. Another form of theP relation
follows by substituting|±〉 into the equation above which leads to

P(t) = |〈9R|e−iĤ t/h̄|9L〉|2 =
(

1
2

3∑
j=1

(|〈Ej |+〉|2− |〈Ej |−〉|2)e−iEj t/h̄

)2

P = max{P(t)} =
(

1
2

3∑
j=1

||〈+|Ej 〉|2− |〈−|Ej 〉|2|
)2

.

(6)

Again keeping in mind orthonormality constraints, equation (6) is easily seen to be consistent
with P = 1 only if |+〉 or |−〉 is one of the eigenstates.

For almost all values of{α, λ, r}, this condition is not met precisely; see figure 1. The
maximum tunnelling probability is calculated for the above three-level model using two
different matrix element ratios. It illustrates three main points: (i) the tunnelling shuts off
if the unperturbed localized states are separated in energy further thanv2 no matter how
close the chaotic level, (ii) the behaviour is distinct from the direct tunnelling case where
there would be noλ-parameter dependence since the position of other levels relative to the
tunnelling pair would be irrelevant, and (iii) the parameter domain of significant tunnelling
shrinks as the matrix element ratio,r, gets further from unity.

The narrowing range of significant tunnelling with respect toα as the chaotic level
moves further away betrays a second important distinction between chaos-assisted and
direct tunnelling. The tunnelling time increases proportionally to the distance to the
coupled chaotic level. More generally, this is the root of the splittings’ sensitivity to
external parameter variation mentioned in the first paragraph: for a statistical theory of the
fluctuations see [8]. Perturbation theory suffices to understand the probability narrowing and
increasing time effect. It also describes the natural regime in which the admixtures between
9C and {9L,9R} are very weak, i.e.EC � v1, v2, E(α). Perturbative diagonalization
of the coupling between the chaotic level and the localized levels leads to a second-order
two-level system whose Hamiltonian is

Ĥ2(α, λ)

(
9 ′L
9 ′R

)
=
(−E(α)− (±)vt/r −vt

−vt E(α)− (±)rvt
)(

9 ′L
9 ′R

)
(7)

† Interestingly enough, if the system is not time reversal invariant, it is not necessary that one of the eigenstates be
a generalized (complex coefficient) version of|±〉, and equation (6) does not hold. The normalization constraints
still require that|aLj | = |aRj | for all j .
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Figure 1. Contour plot of the maximum tunnelling
probability,P, versus the two parameters,{α, λ}. In
the upper figure,r = |v2/v1| = 1, and in the lower
figure, r = 4. El(α) varies linearly withα over the
interval {−1.75v2, 1.75v2}, i.e. El(α) = αv2. EC
varies linearly withλ over the interval{−7v2, 7v2},
i.e. EC = λv2. The (10%, 30%, 50%, 70%, 90%)
tunnelling probability contours are drawn. The solid
curves are the 50% tunnelling probability contours.

where(±) is positive if v1v2 > 0 and negative otherwise. There are two effects. One is an
induced second-order tunnelling matrix element,vt , directly connecting the two localized
states

vt = v1v2

EC
. (8)

This expression fixes a precise, non-trivial relationship amongst three avoided crossings.
Each regular level crosses the path of the chaotic level as well as the tunnelling avoided
crossing between the two localized states; see figure 3. The minimum energy gap of each,
{1Et,1E1,1E2}, is approximately equal to the appropriate one of the set{2vt , 2v1, 2v2}
to the extent that{v1, v2} do not vary locally with{α, λ}. In that case

1Et = 1E11E2

2EC
. (9)

Note that the minimum separation distance of the tunnelling pair’s avoided crossing seen by
varyingα alone is larger if the chaotic level lies closer to the pair. Thus, one has explicitly
the dependence of the tunnelling on the position of the chaotic level and the overlap of the
localized states with the chaotic state.

The other effect is the repositioning of the two regular energy levels. If the first-order
perturbation diagonalization leaves the energy levels closer thanvt , then tunnelling takes
place. In cases wherer = 1, the repositioning cancels, relatively speaking. Essentially,
tunnelling takes place nearE(α) = 0 for a narrowα-interval proportional tovt . For
r 6= 1, the tunnelling is offset and occurs near 2E(α) = (±)vt (r − 1/r). At those points
the perturbation has pushed the levels together, thus distorting the appearance of figure 1
relative to ther = 1 case. As the chaotic level moves further away, it becomes ineffective
at pushing the localized levels together and the tunnelling probability slowly approaches the
form of ther = 1 case. Finally, it follows from diagonalizing the projected Hamiltonian that
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the time to tunnel resonantly from9l to 9R and back is given byτ = πh̄/|1E| ≈ |h/vt |
which has the linear growth with distance to the closest important chaotic level mentioned
above. To summarize, the avoided crossing relation, the narrowing tunnelling probability
range dependence, the tunnelling time dependence onEC , and the existence of an orthogonal
transformation from three eigenstates to two localized states and a chaotic level all serve to
distinguish chaos-assisted from direct tunnelling processes.

3. Coupled quartic oscillator example

To illustrate the main features of interest, consider the coupled quartic oscillators; see [1]
for an extensive background. The Hamiltonian we consider is given by

Ĥ (α, λ) = p
2

2
+ a(λ)(q4

1/b + bq4
2 + αq1q

3
2 + 2λq2

1q
2
2). (10)

Due to the homogeneous degree of the potential, the dynamics on any positive energy
surface can be mapped onto any other. It suffices to study theE = 1 surface and scale
the phase space coordinates appropriately for other energies. For example, the classical
actions scale asE3/4. a(λ) is a constant chosen for calculational convenience, and because
it simplifies the relation between the eigenvalues,En, at h̄ = 1 with the eigenvalues, ¯hn,
for which there is a solution atE = 1. That isE−3/4

n (h̄ = 1) = h̄n(E = 1). b = π/4
reduces the symmetry from that of a square to that of a rectangle. Forα = 0, andλ
decreasing from 0 to−1, this system makes a transition from integrable dynamics through
mixed phase space dynamics towards fully chaotic dynamics. It has been previously shown
to exhibit chaos-assisted tunnelling over the rangeλ ∈ [−0.50,−0.20] where there exists
a mixed phase space dynamics consisting of a single dominant chaotic region and several
islands of stable motion embedded within. The system is symmetric with respect to time
reversal and separately, inversion with respect toq1 and q2. With α 6= 0, a reflection
symmetry remains along with time-reversal symmetry. However, if a localized state is
being constructed on a torus possessing both these symmetries, it will not have multiple
copies in phase space. Therefore, no quasidegeneracies are implied, and enough symmetry
is broken for the purposes of this study.

The most significant stable islands in the relevantλ range correspond to motion along
the diagonals. In figure 2, two such tori are shown projected into configuration space
for the symmetric case (α = 0). Locally changing the parameters{α, λ} in the potential
deforms them, but they remain intact. Asα increases from zero, the equipotential contour
moves as indicated by the marked arrows. A localized state constructed on a torus
which is being ‘stretched’ moves down through the spectrum with the maximum slope
locally (wavelength increasing), and one constructed on a torus being ‘squeezed’ moves up
(wavelength decreasing). Regular states will show up in the spectrum as doublets that split
significantly with increasingα forming the appearance of a sideways V. Figure 3 shows a
portion of the spectrum. The localized states are readily visible (i.e. they follow the arrows).
On the other hand,α has little influence on states, such as chaotic ones, which are excluded
from motion along the diagonals. Such states move rather flatly across the spectrum with
α (also readily visible). Although we can identify states localized along the configuration
space diagonal solely from their level motions with respect toα, we have taken advantage
of previous work which identified all the quantizing tori, their scaled actions, and quantum
numbers. In this way, we will give results below for both quantizing tori and quantizing
‘cantori’ [9].
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Figure 2. Two quasiperiodic classical trajectories (tori)
of the Hamiltonian of equation (10) with{α, λ} =
{0.0,−0.25}; taken and modified from [1]. The
equipotential encircles the trajectories. The arrows point
to positions of maximum change in the equipotential by
{α, λ} respectively. The full arrowheads indicate thatα
‘stretches’ one torus whereas it ‘compresses’ the other.
The half-filled arrowheads indicate the squeezing effect
of λ on the chaotic eigenstates.

Figure 3. An excited-energy window in the coupled
quartic oscillators’ spectrum is shown for fixedλ as
a function of the symmetry-breaking parameterα.
The arrows indicate the slopes of a couple of the
visible regular levels. The broken-line box encloses a
very narrow tunnelling avoided crossing between two
localized states in its upper centre. The tunnelling
matrix elements connecting to the closest chaotic
state,{v1, v2} can be deduced from the two avoided
crossings near the two lower corners. The tunnelling
takes place only over a very tiny range ofα near
0.0275.

Another feature seen in figure 2 is thatλ alters the potential in a way that strongly
affects the chaotic states’ positions relative to localized states since the latter are insensitive
to squeezing near theq1 = 0 and q2 = 0 lines. Thus, although in the coupled quartic
oscillators{α, λ} do not have precisely the same meaning as in the three-level model, they
are nearly identical and hence our use of the same notation. Note that a slight linear
transformation to new variables{α′, λ′} could be made to give a precise analogy to the
three-level model parameters. In principle, this transformation is not global and must be
determined separately for each quartic oscillator triplet of levels. In an experiment where
one is varying parameters such as external field strengths, temperature, applied stresses etc,
it may be unknown at the outset what effects the parameter variations are going to have on
the levels. This poses no fundamental difficulty as long as the two parameter variations in
question do not move the levels in a linearly dependent way. By measuring the effects of
the two parameters, one can readily deduce the necessary linear transformation that isolates
the parameter governing the localized states’ avoided crossing from the parameter which
changes the local spectrum of chaotic states. To an excellent approximation supposing the
chaotic level not too close, one could fit the differences of the localized levels’ energies
with a linear function of{α, λ} and set it proportional toα′. To finish one would fit the
energy difference between the mean position of the localized levels and the chaotic level to
another linear function of{α, λ} and set it proportional toλ′. Together, these two equations
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Figure 4. Expanded view of the level triplet inside the
broken-line box of figure 3 for two different values
of λ. As λ decreases, the chaotic level approaches
the localized pair and has the effect of increasing the
width of the avoided crossing. The width controls the
tunnelling time and the range over which tunnelling
can occur (it occurs roughly over the interval in
which the localized states are within±√2 times the
minimum energy separation).

would be sufficient if one needed the inverse transformation as well.
Reconstructing the equivalent of figure 1 for the quartic oscillators or, more generally

any physical system, is a prohibitive amount of work. We therefore look for the other
characteristic features of the three-level model. It already requires a certain amount of
exploration to determine how broad a parameter range is necessary for the purposes of: (i)
locating appropriate triplets—some localized avoided crossings may couple to two or more
chaotic levels, (ii) covering the full avoided crossing of the pair of localized states, and (iii)
varying the most important chaotic level from nearby to further away. For example, the
broken-line box in figure 3 encloses one tunnelling example nearα = 0.0275. However,
over the vast majority ofα values, these levels are not involved in any tunnelling process.

We begin by verifying the applicability of the avoided crossing relation, equation (9). In
figure 4, the triplet of levels shown is an expanded view from the previous figure (except that
λ has been slightly shifted in value). In the upper half of the figure, significant tunnelling
occurs only over the rather narrow rangeα ∈ [0.0272, 0.0277]. For this specific case,
it happens that the coupling matrix elements are{v1, v2} = {0.014, 0.026}, respectively,
making the ratior = 1.86; they are deduced by reconstructing the two chaotic-level-
localized-level avoided crossings nearby. The localized pair of states undergoes a crossing
whose minimum separation distance is inversely proportional to the distance of the chaotic
level. By changingλ from−0.2525 to−0.2575, the chaotic level approached the tunnelling
pair sufficiently to increase the minimum energy gap at the crossing from 0.0027 to 0.0073.
The predicted gaps from equation (9) are respectively 0.0030 and 0.0064. Considering the
assumptions of there being only one coupled chaotic level and the constancy of{v1, v2}, the
use of perturbation theory, and the fact that one of the localized states is a cantorus quantizing
well outside the boundary of the classical KAM island of regular motion, the agreement is
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Figure 5. Quartic oscillator eigenstates and rotated
wavefunctions. Three consecutive eigenstates and
wavefunctions formed by nearly orthogonal linear
combination are pictured for a constant set of
contour levels. They are given for the three
levels pictured in the upper part of figure 4 at
the α-value (0.02743) leading to the minimum
splitting between the localized states’ eigenvalues.
The linear combination is calculated to maximize
the localization of {9L,9R} and maximize the
orthogonality of 9C to them within the space
defined by the three eigenstates.

quite good. In a second example that we have calculated atE = 94.93 involving quantizing
bona fide tori, the results are even better, the predicted value is 0.00074 versus the actual
0.00076.

Next, to illustrate that tunnelling is taking place between two localized levels as claimed
and that the chaotic level plays an important role, we consider the three correlation functions
(final state either9L, 9R, or 9C) of the same form as the evolving tunnelling probability
of equation (2). A straightforward method to making the needed calculations begins by
seeking the optimal linear combinations of the three most important eigenstates needed to
construct{9L,9R,9C}. To the extent that localized states are well represented in this
way, it suffices. Otherwise coupling to more than one chaotic level is implied, and it is
necessary to construct the EBK approximation directly and propagate the wavefunctions. In
figures 5 and 6 we show two examples. The left column contains contour plots of the three
eigenvectors nearest the tunnelling avoided crossing shown in the upper half of figure 4, and
the right column shows the best{9L,9R,9C}-decomposition. Figure 5 corresponds to the
first example discussed above where one of the localized states is quantized on a cantorus.
It is distinguished by having three diagonal nodal lines. The other localized state lies just
on the KAM island-chaos boundary. At this level of pictorial representation, there is no
salient feature which distinguishes the quantized cantorus from a proper quantized torus.
However,{9L,9R,9C} deviate from orthogonality at the level of a percent or two. Figure 6
corresponds to the latter example atE = 94.93 and both localized states are quantized on
tori well within the diagonal stable island boundaries. They are orthogonal to a part in 104.
Note that: (i) the tunnelling in both these examples occurs between levels with differing
quantum numbers, (ii) the three-level restriction causes no difficulty whatsoever in obtaining
two highly localized three-level model states,{9L,9R}, whose correspondence to motion
of the kind pictured in figure 2 is manifest: these states would match precisely to a direct
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Figure 6. Quartic oscillator eigenstates and rotated
wave functions. Similar to figure 5 except near
energy E = 94.93, λ = −0.2500, andα =
0.023 009.

construction based on a semiclassical EBK-like approach, and (iii) the chaotic states are
each localized to a great degree on known, short, unstable periodic orbits, i.e. a self-retracing
vertical bouncing motion, and an oval path, respectively.A priori, this last point should be
considered as being an accidental consequence of our selection of tunnelling examples. Not
all chaotic states have to be so localized on short, unstable periodic orbits. If there is more
to this ‘accident’, more investigation would be required to expose the reasons. Clearly,
the larger the part of the Hilbert space associated with torus and cantorus quantization,
the more constrained the set of possibilities for the remaining, chaotic states. They could,
for example, be associated with a narrow band of phase space surrounding these unstable
periodic orbits stretching part of the way along each one’s stable and unstable manifolds
because that is all the phase space remaining. We leave this question for another study.

In the tunnelling cases shown, over long times the evolution of a state initially localized
on one diagonal moves completely over to the other (>95%). It will continue to move
back and forth with time. The tunnelling correlation functions corresponding to figures 5
and 6 are pictured in figures 7 and 8. The time to tunnel from one localized state to the
other is the low frequency oscillation visible. The superposed, high frequency oscillation
reflects the role of the chaotic level in aiding the tunnelling process as discussed in [1]. The
process is one of small amplitude transfer to the chaotic state that then transfers to the other
localized state bit by bit. At no time is there a build-up of large probability on the chaotic
state. The ratio of the tunnelling times of the two figures roughly equals the inverse ratio
of the high-frequency oscillation amplitudes seen in the lower graphs, as predicted.

Still within the perturbative regime, the generalization of the three-level model to
incorporate coupling to many chaotic levels is straightforward. In fact, equation (7) becomes

Ĥ2(α, λ)

(
9 ′L
9 ′R

)
=
(−E(α)−∑i (±)i vt,iri −∑i vt,i

−∑i vt,i E(α)−∑i (±)irivt,i

)(
9 ′L
9 ′R

)
(11)
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Figure 7. Time correlation functions of9L from figure 5.

where the indexi is introduced to sum over the coupling to each of the chaotic levels.
Tunnelling still takes place at the avoided crossing, and varyingλ continues to affect
the splitting strongly. However, the simple inverse relation between the splitting and the
distance to the closest chaotic level (which also translates into a function ofλ) as embodied
in equation (9) will be modified. Nevertheless, even though one does not generally expect
all the chaotic levels to move with exactly the same slope, locally over smallλ-intervals,
qualitatively similar behaviour to the three-level model as a function ofλ still often holds.

It may seem odd at first encounter that coupling to chaotic levels could enhance
tunnelling. After all, attempts are sometimes made to model coupling to the environment by
coupling to chaotic degrees of freedom [10]. Under most circumstances, the environment
quenches tunnelling [11]. In the limit of high density of chaotic levels with many lying
close to the localized tunnelling pair, the three-level model must be expanded to incorporate
a large number of strongly coupled, chaotic states (the coupling is strong because of the
proximity of the levels, not an increase of the{vt,i}). The requirement for tunnelling to
take place, that one of the eigenstates must be either|±〉, is replaced by the notion that the
full space can be subdivided into two subspaces each spanned by non-overlapping subsets
of the true eigenvectors and that the projection of|+〉 into one of the two subsets must be
unity and the projection of|−〉 must be unity into the other subspace. Equation (6) retains
its same form except that the summation is extended to cover the larger space. It becomes
highly improbable to satisfy the projection requirement andP approaches zero. Even if
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Figure 8. Time correlation functions of9L from figure 6.

some parameter range can be found which givesP approaching unity, the tunnelling time
will be incredibly long due to the introduction of multiple, irrationally related timescales, all
of which must lead simultaneously to certain combinations of phase shift relationships. In
the strongly coupled limit, the image is thus one in which the symmetry breaking quenches
the tunnelling and indirect interactions via the chaotic levels are insufficient to restore it.

In summary, we have shown how chaos-assisted tunnelling in a mixed phase space
system lacking symmetry can be re-established through the variation of two external
parameters. One parameter moves the two localized levels through an avoided crossing and
the other moves the neighbouring delocalized or chaotic levels. If changes in the proximity
of such ‘third party’ levels not involved in the avoided crossing itself strongly alters the
minimum energy gap, the tunnelling is not via direct coupling. The parameter regimes are
very narrow and require searching to locate them. Some of the tunnelling doublets couple
most strongly to a single closest chaotic level. In these cases, the generalized three-level
model expressed in equation (1) captures the essence of the tunnelling behaviour. A striking
feature is the relationship expressed in equation (9) fixing the tunnelling times and localized
level splittings by the avoided crossings between the regular and chaotic states. It was well
satisfied for the quartic oscillator examples shown involving quantized tori and cantori. It
was also possible to create extremely well-localized states from linear superpositions of just
three eigenstates vindicating the basis of the given asymmetric three-level model. Other
examples not shown required coupling to multiple chaotic levels rendering the signature
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of chaos-assisted tunnelling less clean for them. We had quantum mechanics in mind
throughout this paper, but the same considerations apply to other wave equations. With the
results contained herein, several acoustic, microwave, and optical systems are imaginable
that would display chaos-assisted tunnelling even though they may lack intrinsic symmetries
(assuming their cavityQ-values can be made sufficiently high). As a final remark, we note
that it would be very interesting to carry out an investigation of broken or absent symmetry
and tunnelling behaviour between chaotic states [3] in a similar vein as this study of chaos-
assisted tunnelling.
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